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Abstract—We propose a multimodal semi-supervised acoustic
scene classification framework that combines label smoothing and
hard sample identification to enhance model generalization and
robustness. Experimental results on the Chinese Acoustic Scene
dataset show that our method achieves the highest classification
performance, consistently surpassing baseline systems in both
simulated data with artificially generated test split and full-
dataset experiments on the training split.

I. INTRODUCTION

Acoustic Scene Classification (ASC) has emerged as a piv-
otal task in environmental sound analysis, enabling machines
to recognize and interpret diverse scenes such as streets, parks,
or public transport hubs. ASC systems are fundamental for a
wide range of applications, including intelligent surveillance,
context-aware devices, and smart city infrastructures. Despite
significant advances driven by deep learning, the performance
of ASC models is often constrained by the scarcity of labeled
data and the inherent complexity of real-world acoustic scenes.
A challenge is conducted yearly to foster research in this area,
along with sound event detection [1], providing a benchmark
dataset that includes various acoustic scenes.

Recent research has explored semi-supervised learning [2],
crosstask [3], domain shifting [4], and multimodal [5] ap-
proaches to address these challenges. Semi-supervised learning
leverages both labeled and unlabeled data, mitigating the
reliance on extensive manual annotation. Multimodal systems,
on the other hand, integrate complementary information from
various feature representations, enhancing model robustness
and generalization. However, two persistent issues remain:
overconfidence in model predictions and the presence of hard-
to-classify samples that can hinder effective learning.

In this work, we propose a multimodal semi-supervised ASC
framework that incorporates label smoothing and hard sample
identification. Label smoothing regularizes the learning process
by preventing the model from becoming overly confident,
thereby improving generalization. Hard sample identification
dynamically emphasizes challenging samples during training,
enabling the model to focus on ambiguous or confusing cases.
We coupled two aforementioned strategies with a previous
fully convolutional neural network (FCNN) [6]. We evaluate

our approach on the Chinese Acoustic Scene (CAS) 2023
dataset, demonstrating that the integration of these strategies
leads to substantial improvements in classification accuracy
and robustness. Our results highlight the effectiveness of
combining regularization and adaptive sample weighting in
advancing the state-of-the-art for ASC tasks.

II. METHODS

A. Datasets

The dataset evaluated in this Chinese Acoustic Scene (CAS)
2023 dataset CAS2023 [7]. It consists of 8,700 audio samples
recorded in various environments, including ”Bus”, ”Airport”,
”Metro”, ”Restaurant”, ”Shopping mall”, ”Public square”, ”Ur-
ban park”, ”Traffic street”, ”Construction site”, and ”Bar”.
Each sample is labeled with the corresponding acoustic scene
category; however, only 20% of the samples are annotated with
fine-grained labels (1740 samples). Since the test data is not
available, we split the labeled training data into training and
test sets (870 samples each) to evaluate the performance of
our proposed method on unseen data. Hence, two kinds of
data from the same dataset are evaluated:

• Simulation data: The labeled training data is split into
training and test sets, which includes 870 labeled samples
for each split (7830 total samples for training);

• Experiment data: This is the full dataset, which includes
all 1740 labeled samples as training with no label on the
test set (8700 total samples for training).

B. Label Smoothing

Label smoothing is a regularization technique that helps
prevent overfitting by softening the target labels during training
[8]. Instead of using hard labels (e.g., 1 for the correct class and
0 for all others), label smoothing assigns a small probability
to incorrect classes, effectively creating a distribution over
classes. This approach encourages the model to be less confi-
dent in its predictions, which can lead to better generalization.

We embed label smoothing into the loss function by modify-
ing the standard cross-entropy loss to a label-smoothed cross-
entropy loss. The standard cross-entropy loss with K classes
is defined as:



LCE = −
N∑
i=1

K∑
k=1

yi,k log pi,k

where:
• N is the number of samples
• K is the number of classes
• yi,k is the one-hot encoded label (1 if sample i belongs

to class k, 0 otherwise)
• pi,k =

exp(zi,k)∑K
j=1 exp(zi,j)

is the predicted probability (softmax
output)

• zi,k is the logit for class k

Label smoothing modifies the target labels to create a
smoothed version ỹi,k, where α is the smoothing parameter
(typically between 0 and 1). The smoothed target probabilities
are defined as:

ỹi,k =

{
1− α+ α

K if k = ki (true class)
α
K if k ̸= ki (other classes)

Alternatively, this can be expressed as:

ỹi,k = (1− α)yi,k +
α

K

where ỹi,k represents the smoothed target probability.
The label smoothed cross-entropy loss becomes:

LLS = −
N∑
i=1

K∑
k=1

ỹi,k log pi,k

Substituting the smoothed targets:

LLS = −
∑

i = 1N

[
(1− α) log pi,ki

+
α

K

K∑
k=1

log pi,k

]
This can be decomposed into two terms:

LLS = (1− α)LCE + αLuniform

where:
• LCE is the standard cross-entropy loss.
• Luniform = − 1

K

∑K
k=1 log pi,k encourages a uniform

distribution.
We set α = 0.1 for label smoothing, which means that the

model will be less confident in its predictions, leading to better
generalization.

C. Hard Samples Identification

Figure 1 illustrates the process of identifying hard samples
in the training dataset. The goal is to enhance the model’s
performance by focusing on samples that the model finds chal-
lenging to classify correctly. The process starts from converting
raw audio into log mel spectrograms as input features to the
pre-trained model.

To identify hard samples within the training data, we first
run inference on all training samples using the current pre-
trained SE-Trans model. For each sample, we calculate the
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Fig. 1. Hard samples identification process

confidence score, defined as the maximum softmax probability
output by the model (instead of 1 - uncertainty as in [9]).
Samples with confidence scores below a threshold of 0.7 are
considered ”hard” samples, as the model is less certain about
their classification. The indices of these hard samples are then
collected for further analysis or targeted training.

For each training sample, we first calculate the confidence
score as the maximum softmax probability output by the
model. These confidence scores are then converted into sample
weights using the equation 1. To ensure comparability across
samples, the resulting weights are normalized such that their
mean equals 1.0. This process yields a tensor of sample
weights that can be used to emphasize hard samples during
subsequent training.
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Mathematically, for a sample i with confidence ci, the
weight is calculated as:

weighti =
1

ci + ϵ
(1)

where ci ∈ [0, 1] is the maximum softmax probability, and
ϵ = 1×10−8 prevents division by zero. This approach assigns
higher weights to samples with lower confidence, emphasizing
hard samples during training.
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Fig. 2. Confidence score distribution and weights of training samples

D. FCNN

The proposed FCNN architecture (based on [6]), as shown
in Fig. 3, processes audio spectrograms through a series of
convolutional blocks to extract hierarchical features, followed
by a Transformer encoder for global context modeling. The
initial layers (Block1-Block3) progressively increase channel
depth (144 → 288 → 576) while reducing spatial dimensions
via pooling. Block1 consists of two convolutional layers with
kernel sizes of 5×5 and 3×3, both followed by Batch Nor-
malization and ReLU activation, while Block2 and Block3
use 3×3 kernels throughout with the same normalization and
activation scheme. Block3 employs four convolutional layers
with Batch Normalization, ReLU activation, and a dropout rate
of 0.2 for regularization. A global average pooling layer con-
denses the features into a 128-dimensional embedding, which
is then refined by a Transformer encoder leveraging multi-
head self-attention before passing through a fully connected
layer for classification.

Besides the three strategies above, we also evaluated test-
time adaptation [10] and data augmentation (as used in [2]).
While the former decreases the model’s performance, adding
the latter with the previous three strategies attains the same
performance. Therefore, we only report the results of the three
strategies above.

E. Proposed Systems

We evaluated four systems to assess the effectiveness of each
part of the methods. For the system #1, we applied the baseline
model without any enhancements. System #2 incorporated
FCNN, while System #3 added hard sample identification.
Finally, System #4 combined System #2 with label smoothing

Fig. 3. FCNN architecture

for a comprehensive evaluation. As depicted in Figure 4, all
systems follow a sequential flow, starting with the raw audio
input, followed by feature extraction. Pre-trained models are
fed with the extracted features to predict unlabeled data. The
model from that step is saved as best model 1 and used to
train the whole data. The best model from this step is saved
as best model 2, which is then used to predict the test data.
The final output is the predicted labels for the test data.

III. RESULTS AND DISCUSSION

TABLE I
PERFORMANCE COMPARISON (BALANCED ACCURACY) OF DIFFERENT

SYSTEMS IN SIMULATION AND EXPERIMENT DATA

System Smoothing Hard FCNN Train Pseudo Test
Simulation

#1 × × × 0.920 0.961 0.936
#2 × × ✓ 0.845 0.898 0.824
#3 × ✓ ✓ 0.939 0.958 0.974
#4 ✓ ✓ ✓ 0.947 0.966 0.978

Experiment
#1 × × × 0.966 0.982 -
#2 × × ✓ 0.989 0.985 -
#3 × ✓ ✓ 0.973 0.976 -
#4 ✓ ✓ ✓ 0.989 0.991 -

The experimental results demonstrate the progressive im-
provement in acoustic scene classification performance through
the systematic integration of the proposed methodological
components. In the simulation setting, where labeled training
data is partitioned into training and test subsets, the baseline
system (System 1) achieves modest performance with accuracy
scores of 0.920, 0.961, and 0.936 for training, pseudo-labeling,
and test sets, respectively. Notably, the isolated application
of FCNN (System 2) results in performance degradation,
reducing test accuracy to 0.824, indicating potential overfitting
or architectural incompatibility. However, the incorporation of
hard sample identification with FCNN (System 3) substantially
enhances generalization capability, elevating test accuracy to
0.974. The comprehensive system (System 4), integrating label
smoothing, hard sample identification, and FCNN, achieves the
optimal performance with a test accuracy of 0.978, represent-
ing a 4.2% improvement over the baseline.

The experimental validation on the complete dataset reveals
consistent trends with enhanced absolute performance metrics
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across all system configurations. The baseline system demon-
strates improved stability with training and pseudo-labeling
accuracies of 0.966 and 0.982, respectively, reflecting the
benefit of increased training data availability. System 2 exhibits
remarkable improvement to 0.989 training accuracy when
FCNN is applied to the full dataset, contrasting sharply with
its simulation performance and suggesting that architectural
benefits become apparent with sufficient training samples.
Systems 3 and 4 maintain competitive performance levels,
with the complete methodology (System 4) achieving the
highest pseudo-labeling accuracy of 0.991, establishing the
synergistic effectiveness of the proposed multimodal semi-
supervised learning framework incorporating label smoothing
regularization and adaptive hard sample weighting strategies.

IV. CONCLUSIONS

Our study highlights the effectiveness of integrating ad-
vanced techniques such as hard sample identification and
label smoothing in enhancing acoustic scene classification
performance. The proposed framework with multimodal data
demonstrates significant improvements over baseline models,
particularly in challenging scenarios with limited labeled data.
Future work will focus on further refining these methods and
exploring their applicability to other domains within environ-
mental sound analysis.
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